Refereed journals
Paganin, S., De Valpine, P. (2024) Computational methods for fast Bayesian model assessment via calibrated posterior p-values.
Journal of Computational and Graphical Statistics (accepted).
[
link |
arXiV |
github |
poster
]
Paganin, S., Paciorek, C., Wehrhahn, C., A. Rodríguez, A.
Rabe-Hesketh, S., De Valpine, P. (2022) Computational strategies and estimation performance with Bayesian semiparametric Item Response Theory models. Journal of Educational and Behavioral Statistics, 35(3), 307–335
[
link |
arXiv |
github |
poster
]
de Valpine, P., Paganin, S., Turek, D. (2022) compareMCMCs: An R
package for studying MCMC efficiency. Journal of Open Source
Software, 7(69), 3844
[
link |
github |
CRAN |
slides
]
Paganin, S., Herring, A.H., Olshan A.F., and Dunson, D.B. (2021)
Centered Partition Process: Informative Priors for Clustering (with
Discussion). Bayesian Analysis 16(1), 301–370
[
link
|
arXiv |
github |
poster|
BA Discussion Webinar ]
Durante, D., Paganin, S., Scarpa, B. and Dunson, D.B. (2017)
Bayesian modeling of networks in complex business intelligence
problems. Journal of the Royal Statistical Society: Series C 66,
555–580
[
link |
poster]
Preprints
Paganin, S., Page, G. L., Quintana, F. (2023)
Informed Random Partition Models with Temporal Dependence
[
arXiV |
github
]
Qiu, M., Paganin, S., Ohn, L., Lin, L. (2023)
Bayesian Nonparametric Latent Class Analysis With Different Item Types.
[
OSFpreprint
]
Other publications
Refereed proceedings
Paganin, S. (2021). Semiparametric IRT models for non-normal latent traits. (pp. 178 - 181) CLADAG 2021 Book of Abstracts and Short Papers.
Paganin, S., Paciorek C., de Valpine P. (2020). Bayesian IRT models in NIMBLE. (pp. 644 - 649) Book of Short Papers SIS 2020.
Paganin, S. (2019). Domain knowledge based priors for clustering. Proceedings of the Conference of the Italian Statistical Society. “Smart Statistics for Smart Applications”, Pearson.
Paganin, S. (2017). Modeling of complex network data for targeted marketing. Proceedings of the Conference of the Italian Statistical Society. “Statistics and data Sciences: new challenges, new generations”, Firenze University Press.
Discussions
Aliverti, E., Paganin, S., Rigon, T. and Russo, M. (2019) A
discussion on: “Latent nested nonparametric priors” by Camerlenghi, F.,
Dunson, D.B., Lijoi, A., Prünster, I. and Rodríguez, A. in Bayesian
Analysis 14, 4, 1303–1356
[
link]
Book chapters
Aliverti E., Forastiere L., Padellini T., Paganin, S. and Wit E.
(2018) Hierarchical Graphical Model for Learning Functional Network
Determinants.
Studies in Neural Data Science, Springer Proceedings in Mathematics &
Statistics, Springer.
[
link
]
Edited Books
Argiento, R., Camerlenghi, F., Paganin, S. [Eds.] (2022) New Frontiers in Bayesian Statistics. BaYSM 2021, Online, September 1–3. Springer Proceedings in Mathematics and Statistics, Springer.
[
link
]