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[1] Introduction
� Clustering is one of the building blocks in Bayesian nonparametric modeling.

� Discrete nonparametric priors typically induce a latent partitioning c of the data
⇒ described by mean of an Exchangeable Partition Probability Function (EPPF)
How to incorporate concrete prior knowledge into the clustering process?

Motivation arises from an epidemiological problem in which experts provide
grouping information on the basis of biological knowledge

� n different diseases, indexed by j ∈ {1, . . . , n}, varying from common to rare ones
� access to an informed prior guess c0 based on biological knowledge

� interest in inserting this information in the model to perform data analysis

Diseases in the same group will have similar coefficients in logistic regression

analysis relating exposure factors to the risk of developing the disease

[2] Set Partitions
A set partition c of an integer [n] is a collection of non-empty disjoint subsets
{B1, B2, . . . , BK} such that ∪Ki Bi = [n] .

First know application in 1500 AD, in the context of

popular games in Japanese upper-class society (tea

ceremonies, Genji-ko game)[1]

Which of the 5 incense sticks are the same?

There are 52 possible answers!

Set partitions space Πn

�Number of partitions of [n] into k blocks
⇒ Stirling numbers S(n, k)

� Total number of set partitions

⇒ Bell number Bn =
∑n

k=1 S(n, k)

�Blocks sizes {|B1|, . . . , |BK|}
⇒ individuate an integer partition, a set of posi-
tive integers {λ1, . . . , λK} such that

∑K
i=1 λi = n

� Such space (Πn, ≤) endowed with a relation of
set containment is a partially ordered set (poset)
which allows to represent the space bymeans of the

Hasse diagram
� The space Πn is also a lattice, with upper bound

1 = {n} and lower bound 0 = {1}{2} . . . {n}

Hasse diagram for the lattice of set partitions of 4 elements. A line is drawn when a partition is covered by the other. For

example {1}{2, 3, 4} is connected with 3 partitions obtained by splitting the block {2, 3, 4} in any possible way.

[3] Centered Partition process
The Centered Partition process defines a probability

distribution over the space of set partitions as

p(c, c0, ψ) ∝ p0(c)e−ψd(c,c0) (1)

� p0(c) indicates a baseline distribution (EPPF) on the set
partitions space

� d(c, c0) distancemeasuring how much a
generic partition c is far form the base one c0

⇒ ideally a suitable metric on the set partitions lattice
� ψ penalization parameter controlling for the centering
ψ = 0; p(c, c0, ψ)→ p0(c); ψ →∞; p(c, c0, ψ) = δc0

Consider sets of partitions with a fixed distance from c0

sl(c0) = {c ∈ Πn : d(c, c0) = δl}, l = 0, 1, . . . , L (2)

�L the maximum possible distance from c0

� δ0 = 0, hence s0(c0) is set of partitions differing from c0

by a permutation of the cluster labels.

Analytic form for (1)

p(c, c0, ψ) = p0(c)
e−ψsl(c0)∑L

m=1 nme
−ψsm(c0)

, for c ∈ sl(c0)

nm = |sm(c0)| denotes the cardinality of the set sm(c0)
typically not possible to be calculated analytically

⇒ but can nonetheless be used in Bayesian models rely-
ing on Monte Carlo methods.

Baseline EPPF
Come from different process

depending on the assumed

exchangeable behavior

�Uniform p0 = 1/Bn
�Dirichlet Process

p0 ∝ α|c|
∏|c|

j=1(|Bj| − 1)!

� generic Gibbs-type priors

Choosing the distance
We employed the Variation
of information [3]
� Entropy-based metric

V I(c, c′) = −H(c)−H(c′) + 2H(c, c′)

� Alignment properties

� Easy to compute (block de-

pendent)

Tuning parameter ψ
Depends on n and where c0 is

located in the space

� Exact values computed up

to n = 8

� For n > 8 we consider prior
calibration using a Monte

Carlo estimate

[4] Logistic regression borrowing
Model specification

� j = 1, . . . , n diseases, i = 1, . . . , nj observations related to the disease

� y
(j)
i = 1 if observation i has the disease j while y

(j)
i = 0 is a control

�X(j)
data matrix associated to diasease j, with each row x

(j)
i = (x

(j)
i1 , . . . , x

(j)
ip ) being the

observed values for ith observation of p dichotomous variables.

y
(j)
i ∼ Ber(π

(j)
i )

π
(j)
i = α(j) + x

(j)T
i βcj

(β(j)|cj = h) = β(h), j = 1, . . . , n,

β(h) ∼ Np(b,Q) h = 1, . . . , H,

c = (c1, . . . , cn) ∼ CP(c0, ψ, p0)

Posterior computation
Posterior distributions are obtained viaMCMC algorithm, with key steps
� A Polya-gamma data augmentation[4] for Bayesian logistic regression, introducing
latent variables ω

(j)
i ∼ PG(1, α(j) + x

(j)T
i βcj)

� Class allocation step involving the CP process penalization, easily adapt widely used

sampling algorithm (eg. marginal sampling, split-merge moves [2])

[5] Grouping diseases
� Data comprises n = 26 different diseases, with classification
providing 6 groups with sizes {8, 7, 4, 4, 2, 1}

� Around 80 exposures, comprising demographics, drugs, habits

� Considered different values for ψ ∈ {300, 700, 1110}
(note that B26 = O(1019))

1 2 3 4 5 6

Group 1 0 1 0 0 4 7 12

ψ1 Group 3 1 0 8 4 0 0 13

Group 5 1 0 0 0 0 0 1

Group 2 0 0 0 4 0 7 11

ψ2 Group 3 0 0 8 0 0 0 8

Group 9 2 0 0 0 0 0 2

Group 10 0 1 0 0 4 0 5

Group 1 0 1 0 0 0 0 1

Group 3 2 0 0 0 0 0 2

ψ3 Group 6 0 0 8 0 0 0 8

Group 9 0 0 0 4 4 0 8

Group 10 0 0 0 0 0 7 7
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