Centered Partition Process: Informative Priors for Clustering

University of Padova* Italy. Duke University ${ }^{\dagger}$, Durham, USA.

[3] Centered Partition process

The Centered Partition process defines a probability distribution over the space of set partitions as

$$
p\left(\boldsymbol{c}, \boldsymbol{c}_{0}, \psi\right) \propto p_{0}(\boldsymbol{c}) e^{-\psi d\left(\boldsymbol{c}, \boldsymbol{c}_{0}\right)}
$$

- $p_{0}(\boldsymbol{c})$ indicates a baseline distribution (EPPF) on the set partitions space
- $d\left(\boldsymbol{c}, \boldsymbol{c}_{0}\right)$ distance measuring how much a generic partition \boldsymbol{c} is far form the base one \boldsymbol{c}_{0} \Rightarrow ideally a suitable metric on the set partitions lattice
- ψ penalization parameter controlling for the centering $\psi=0 ; p\left(\boldsymbol{c}, \boldsymbol{c}_{0}, \psi\right) \rightarrow p_{0}(\boldsymbol{c}) ; \psi \rightarrow \infty ; p\left(\boldsymbol{c}, \boldsymbol{c}_{0}, \psi\right)=\delta_{\boldsymbol{c}_{0}}$ Consider sets of partitions with a fixed distance from \boldsymbol{c}_{0}

$$
s_{l}\left(\boldsymbol{c}_{0}\right)=\left\{\boldsymbol{c} \in \Pi_{n}: d\left(\boldsymbol{c}, \boldsymbol{c}_{0}\right)=\delta_{l}\right\}, \quad l=0,1, \ldots, L
$$

- L the maximum possible distance from \boldsymbol{c}_{0}
$\square \delta_{0}=0$, hence $s_{0}\left(\boldsymbol{c}_{0}\right)$ is set of partitions differing from \boldsymbol{c}_{0} by a permutation of the cluster labels.
Analytic form for (1)
$p\left(\boldsymbol{c}, \boldsymbol{c}_{0}, \psi\right)=p_{0}(\boldsymbol{c}) \frac{e^{-\psi s_{l}\left(\boldsymbol{c}_{0}\right)}}{\sum_{m=1}^{L} n_{m} e^{-\psi s_{m}\left(\boldsymbol{c}_{0}\right)}}, \quad$ for $\boldsymbol{c} \in s_{l}\left(\boldsymbol{c}_{0}\right)$
$n_{m}=\left|s_{m}\left(\boldsymbol{c}_{0}\right)\right|$ denotes the cardinality of the set $s_{m}\left(\boldsymbol{c}_{0}\right)$ typically not possible to be calculated analytically \Rightarrow but can nonetheless be used in Bayesian models relying on Monte Carlo methods.

[4] Logistic regression borrowing

Blocks sizes $\left\{\left|B_{1}\right|, \ldots,\left|B_{K}\right|\right\}$
\Rightarrow individuate an integer partition, a set of positive integers $\left\{\lambda_{1}, \ldots, \lambda_{K}\right\}$ such that $\sum_{i=1}^{K} \lambda_{i}=n$
■ Such space (Π_{n}, \leq) endowed with a relation of set containment is a partially ordered set (poset) which allows to represent the space by means of the Hasse diagram

- The space Π_{n} is also a lattice, with upper bound $\mathbf{1}=\{n\}$ and lower bound $\mathbf{0}=\{1\}\{2\} \ldots\{n\}$
A set partition \boldsymbol{c} of an integer $[n]$ is a collection of non-empty disjoint subsets
- Number of partitions of $[n]$ into k blocks \Rightarrow Stirling numbers $S(n, k)$
- Total number of set partitions
\Rightarrow Bell number $\mathcal{B}_{n}=\sum_{k=1}^{n} S(n, k)$ $\left\{B_{1}, B_{2}, \ldots, B_{K}\right\}$ such that $\mathrm{\cup}_{i}^{K} B_{i}=[n]$.

Baseline EPPF

Come from different process depending on the assumed exchangeable behavior \square Uniform $p_{0}=1 / \mathcal{B}_{n}$ - Dirichlet Process $p_{0} \propto \alpha^{|c|} \prod_{j=1}^{c \mid}\left(\left|B_{j}\right|-1\right)!$

- generic Gibbs-type priors

Choosing the distance

We employed the Variation of information [3]

- Entropy-based metric $V I\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)=-H(\boldsymbol{c})-H\left(\boldsymbol{c}^{\prime}\right)+2 H\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)$
- Alignment properties
- Easy to compute (block dependent)

Tuning parameter ψ

Depends on n and where \boldsymbol{c}_{0} is located in the space

- Exact values computed up to $n=8$
- For $n>8$ we consider prior calibration using a Monte Carlo estimate
|||||
||||||| ח ח ח|||||| $\Pi \Pi||\Pi| \| \Pi \square$

 ח ITh mil min mil ル ח ח п п п п min minl min

 m m

Hasse diagram for the lattice of set partitions of 4 elements. A line is drawn when a partition is covered by the other. For example $\{1\}\{2,3,4\}$ is connected with 3 partitions obtained by splitting the block $\{2,3,4\}$ in any possible way.

$\{1\}\{2,3,4\}=\{2\}\{1,3,4\}=\{3\}\{1,2,4\}-\{4\}\{1,2,3\}-\{1,2\}\{3,4\}$ \rightarrow < $\left.\{1\}\{2\}\{3,4\}=\{1\}\{3\}\{2,4\}-{ }_{\{1\}\{4\}\{2,3\}}>\{2\}\{3\}\{1,4\} \quad\{2\}\{4\}\{1,3\}=13\right\}\{4\}\{1,2\}$ $\{1\}\{2\}\{3\}\{4\}$

[5] Grouping diseases										
Data comprises $n=26$ different diseases, with classification providing 6 groups with sizes $\{8,7,4,4,2,1\}$ - Around 80 exposures, comprising demographics, drugs, habits ■ Considered different values for $\psi \in\{300,700,1110\}$ (note that $\mathcal{B}_{26}=O\left(10^{19}\right)$)		Drug_15	0.74		(ty_115	0.74	Prug-15		0.450.71	
		${ }_{\text {Drug_ }} 14$								
		${ }_{\text {Drug_1 }}{ }_{\text {drug }}$								
		Drug_11			(ers		${ }^{\text {Dugu-11 }}$			
		Drug_10 Drug								
		Drue 8	1.26				1.37	$\text { Drug } 8$	1.271 .31	
	123456	Drug 7 Drug 6			Drua 7 Drua 6	$\begin{array}{ll}1.23 & 1.9 \\ 1.62\end{array}$				
	Group 101004712	Drug 5			${ }_{\text {Drug_ } 5}$			Drug 53.7		
ψ_{1}	Group 310840013	${ }_{\text {Drug_ }}{ }^{\text {drug }}$	2.17				2.72			
	Group 51000001	Drug 2	1.52		Drug 3		1.54	Drug 2	-	
		Drug1			High lood pressure $\begin{aligned} & \text { Diabeet tuee }\end{aligned}$	1.26		High blood pressure ${ }^{\text {Pata }}$	1.51	
ψ_{2}	Group 300800008	Hight blood pessure	$\begin{array}{lll}2.81 & 3.09 \\ 581 \\ 505\end{array}$			$\begin{array}{l\|l} 2.42 & 6.13 \end{array}$			Diabete type 2Diabeete type 1 \quad4.75 7.145 .86 5	
	Group 30080008	Diabetet ype 1	$\begin{array}{ll}5.81 & 5.57 \\ 1.33 & 0.51\end{array}$		Diabete type 2 Diabete type 1					
	Group 92000002	Gender female			Gender_(temele	${ }^{4.97}$	${ }_{1}^{11.19}$	Gender_female	$\begin{array}{r} 7.145 .865 .05 \\ 4.33 \\ 0.63 \\ 0.57 \\ 0.777 \\ 1.27 \end{array}$	
	Group 100100405	вмL_obese			BML_obese			вMI_obese	-	
	Group 101000001				$\begin{aligned} & \text { BMI_overweight } \\ & \text { BMI_normal } \end{aligned}$			$\begin{gathered} \text { BMI_Overeight } \\ \text { BMI_noimal } \end{gathered}$		
	Group 3200000	BM_underweight			BMI_underewigit			BMI_undemeight		
ψ_{3}	Group 60080008	Location_5 Location 4								
	Group 90004408	Location_3			$\xrightarrow{\text { Location_3 }}$ Leoction_2			Location_2	0.37	
	Group 100000077	Location_1			Location_2					
			$00^{100^{1}} 00^{100^{2}} 00^{100^{20}}$			$100^{100^{1}} 10^{100^{2}} 00^{100^{3}} 00^{100^{4}}$				

[1] Knuth, D. E. (2006) Generating all trees - history of combinatorial generation. The art of computer programming. Vol. 4, Fasc. 4
[2] Neal, R. M. (2000) Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249-265.
[3] MELLĂ, M. (2007). Comparing clusterings - an information based distance Journal of multivariate analysis 98, 873895.
[4] Polson, N. G., Scott, J. G. and Windle, J. (2013) Bayesian in ference for logistic models using Pólya-gamma latent variables. Journal of the American Statistical Association, 108, 1339-1349.

