
compareMCMCs

an R package for running, managing,
and comparing results from different

MCMC packages

Sally Paganin

June 6, 2023

Perry de Valpine (UC Berkeley) Daniel Turek (Williams College)

Acknowledgements

2 / 16

https://ourenvironment.berkeley.edu/people/perry-de-valpine
https://danielturek.weebly.com/

Introduction

Markov chain Monte Carlo (MCMC) are methods used to simulate from complicated
probability distributions

Widely used in Bayesian statistical analysis
➡ target distribution: posterior distribution of parameters given data.

There are many MCMC algorithms (a.k.a. samplers)

Metropolis-Hastings (conjugate samplers)
Hamiltonian Monte Carlo (HMC)
Multivariate samplers
... new methods are constantly developed

Methods are also implemented di�erently in di�erent software

3 / 16

Samplers can be combined

i.e. use a di�erent algorithm for
each parameter

Implementations of the same
algorithm can di�er between
software packages

Plenty of possibilities...

Questions

1. Which algorithms are "better" for a given model?

2. Which software implements better an algorithm?

4 / 16

Ef�ciency in MCMC

Algorithmic mixing & computational speed

Mixing measured in terms of E�ective Sample Size (ESS) equivalent number of
independent samples

R packages implementing di�erent estimators for the ESS
coda, mcmcse, batchmeans, stableGR ...

Speed

sampling time vs total time (e.g. MCMC vs HMC)
language of implementation (e.g. R vs C++)

E�ciency = ESS/(time in seconds)

5 / 16

compareMCMCs

Package for managing performance comparisons among MCMC software packages

Features

the compareMCMCs function: run one or more MCMCs and manage the results.

the MCMCresult class to manage results

a plugin system to include new MCMC engines;

a plugin system for new metrics for comparison among MCMCs;

a system for applying parameter conversions, in case di�erence MCMCs use
di�erent parameterizations and/or parameter names;

a system for generating html pages with �gures from comparison metrics,
including a plugin system to provide new page components;

6 / 16

adaptive M-H with nimble (default)
slice sampling with nimble

slice sampling with JAGS (default)
HMC with Stan (default)

Supported software

Probabilistic programming languages
➡ programming paradigm for automated inference

jags (rjags) - uses mostly on slice samplers
stan (rstan) - Hamiltonian Monte Carlo
nimble - suite of di�erent algorithms

A toy example

7 / 16

A toy example

library(compareMCMCs)
library(nimble)

This model code will be used for both nimble
and JAGS
modelCode <- nimbleCode({
 a ~ dunif(0, 100)
 y ~ dgamma(a, 2)
})

modelInfo <- list(code = modelCode, constants = list(y = 2),
 inits = list(a = 1))

Here is a custom MCMC configuration function
for nimble
configure_nimble_slice <- function(model) {
 configureMCMC(model, onlySlice = TRUE)
}

res_nimble <- compareMCMCs(modelInfo, MCMCs = c("nimble",
 "nimble_slice"), nimbleMCMCdefs = list(nimble_slice = "configure_nim
 MCMCcontrol = list(inits = list(a = 1), niter = 4000,
 burnin = 200))

8 / 16

De�ne the same model in Stan

stan_code <- c("data {real y;}",
 "parameters {real a;}",
 "model {target += uniform_lpdf(a | 0, 100);",
 " target += gamma_lpdf(y | a, 2);}")

make two lists to provide stan model and arguments for sampling
stan_model_args <- list(model_code = stan_code)

stan_sampling_args <- list(data = list(y=2),
 init = list(list(a=1)), # one chain
 warmup = 200,
 iter = 2000)

9 / 16

Run all models in series

res <- compareMCMCs(modelInfo,
 MCMCs = c('jags',
 'nimble', # nimble default
 'nimble_slice', # nimble slice
 'stan'),
 nimbleMCMCdefs =
 list(nimble_slice = 'configure_nimble_slice'),
 MCMCcontrol = list(inits = list(a = 1),
 niter = 2000,
 burnin = 200),
 externalMCMCinfo = list(stan = list(
 stan_model_args = stan_model_args,
 sampling_args = stan_sampling_args)))

or combine them later

res <- c(res_jags, res_nimble, res_nimble_slice, res_stan)

10 / 16

MCMCresult
Results are stored in an R6 class (encapsulate OOP & self-modi�able)

MCMC: optional name for the MCMC method.

samples: matrix of MCMC samples (iteration X parameters)

times: a list of times including elements for setup, burn-in, postburn-in
(sampling for recorded samples), and sampling (normally burn-in + postburn-
in).

metrics: a list of MCMC performance metrics (ESS, e�cency, parameter
summaries). Organized byMCMC, byParameter, other (not used)

make_MCMC_comparison_pages()

Function to create an html output with comparisons of MCMC results - here an
example

11 / 16

https://htmlpreview.github.io/?https://raw.githubusercontent.com/nimble-dev/compareMCMCs/master/vignette/example1.html

Comparison metrics

res$nimble$metrics
> $byMCMC
> MCMC min_efficiency mean_efficiency
> 1 nimble 255278.2 255278.2
> $byParameter
> MCMC Parameter mean median sd CI95_low CI95_upp
> 1 nimble a 5.056558 4.931279 2.057118 1.552509 9.306015
> ESS efficiency
> 1 765.8347 255278.2
> $other
> list()

Add new metrics
Function that takes as input a MCMCresult object and outputs a list

MCMCmetric_median <- function(result, ...) {
 res <- apply(result$samples, 2, median)
 list(byParameter = list(median = res))
}

addMetrics(res, list(MCMCmetric_median))

12 / 16

Page plug-in: �gure or text component

A page plug-in is a list with up to �ve elements:

make: name of a function to create the plottable output such as a ggplot object.

fileSuffix: is a character su�x for �gures name

linkText: hyperlink at the top of the comparison page.

plot: name of a function that plot the output to a jpeg �le. The function takes
as input the plottable element of the list returned from make.

control: is a list that will be passed to the make function.

Registering the component

registerPageComponents(

 list(myNewComponent =
 list(make = "myMakeFunction",
 fileSuffix = "_myPageComponent",
 linkText = "My new page component.")
)
) 13 / 16

More about make
make names a function with 2 arguments

1. tidy metrics from combineMetrics(res, include_times = TRUE)
2. control element of the plugin (user de�ned)

Return information

1. �gure component
The plotting is done between via call to jpeg and dev.off()

plottable - an object that can be plot
height
width

2. text component

printable- character string of html or output from the xtable package
(that can be plotted as html)

14 / 16

New MCMC plugins

An interface to a new MCMC engine is provided as a function that runs the
algorithms and return and MCMCresult object

MCMCinfo: The element of externalMCMCinfo named to match this MCMC
plugin. This can contain whatever information is needed for the plugin.

MCMCcontrol: The MCMCcontrol argument to compareMCMCs.

monitorInfo: A list of names of parameters to monitor (record) in MCMC
output.

modelInfo : The modelInfo argument to compareMCMCs. If the call to
compareMCMCs involved creating a nimble model, it will be added to this list
with the name model.

15 / 16

Status

version of the package on CRAN & Github
https://cran.r-project.org/web/packages/compareMCMCs/index.html
https://github.com/nimble-dev/compareMCMCs/tree/master

Paper on Journal of Open Source Software
https://joss.theoj.org/papers/10.21105/joss.03844

Online vignette

Development

Improve documentation

Add usage examples

Any suggestion?

16 / 16

https://cran.r-project.org/web/packages/compareMCMCs/index.html
https://github.com/nimble-dev/compareMCMCs/tree/master
https://joss.theoj.org/papers/10.21105/joss.03844

